FUNDAMENTOS DE SISTEMAS OPERATIVOS
|
||||||||||||||||||||||||||||||||||||||||
![]() |
||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||
|
Si buscas
hosting web,
dominios web,
correos empresariales o
crear páginas web gratis,
ingresa a
PaginaMX
![]() ![]() Introducción y Definiciones Sobre Procesos
El concepto central de cualquier Sistema Operativo es el de proceso: una abstracción de un programa en ejecución también llamada tarea. No hay un acuerdo universal sobre una definición de proceso, pero sí algunas definiciones aceptadas [7, Deitel]:
El paralelismo real de hardware se da en las siguientes situaciones:
El modelo de procesos posee las siguientes características:
Respecto de los estados del proceso deben efectuarse las siguientes consideraciones:
Durante su existencia un proceso pasa por una serie de estados discretos, siendo varias las circunstancias que pueden hacer que el mismo cambie de estado. Debido a ello se puede establecer una “Lista de Listos” para los procesos “listos” y una “Lista de Bloqueados” para los “bloqueados”. La “Lista de Listos” se mantiene en orden prioritario y la “Lista de Bloqueados” está desordenada, ya que los procesos se desbloquean en el orden en que tienen lugar los eventos que están esperando. Al admitirse un trabajo en el sistema se crea un proceso equivalente y es insertado en la última parte de la “Lista de Listos”. La asignación de la cpu al primer proceso de la “Lista de Listos” se denomina “Despacho”, que es ejecutado por una entidad del Sistema Operativo llamada “Despachador”. El “Bloqueo” es la única transición de estado iniciada por el propio proceso del usuario, puesto que las otras transiciones son iniciadas por entidades ajenas al proceso. La manifestación de un proceso en un Sistema Operativo es un “Bloque de Control de Proceso” (PCB) con información que incluye [7, Deitel]:
Los sistemas que administran los procesos deben poder crear, destruir, suspender, reanudar, cambiar la prioridad, bloquear, despertar y despachar un proceso. La “creación” de un proceso significa:
La “destrucción” de un proceso implica:
Reanudar (reactivar) un proceso implica reiniciarlo en el punto donde fue suspendido. La “destrucción” de un proceso puede o no significar la destrucción de los procesos hijos, según el Sistema Operativo. Generalmente se denomina “Tabla de Procesos” al conjunto de información de control sobre los distintos procesos.
Procesamiento de Interrupciones Una “interrupción” es un evento que altera la secuencia en que el procesador ejecuta las instrucciones; es un hecho generado por el hardware del computador [7, Deitel]. Cuando ocurre una interrupción, el Sistema Operativo:
Generalmente las interrupciones se pueden clasificar por tipos según el siguiente detalle (ver Tabla 2.1 [7, Deitel]:
El Sistema Operativo incluye rutinas llamadas “Manipuladores de Interrupciones (IH)” para procesar cada tipo diferente de interrupción.
Existen tres tipos de PSW, que son la “actual”, la “nueva” y la “vieja”. La “PSW Actual” almacena la dirección de la próxima instrucción que será ejecutada e indica los tipos de instrucciones actualmente “habilitadas” e inhabilitadas”. En un sistema uniprocesador existe:
Cuando ocurre una interrupción para la cual el procesador no está inhabilitado, ocurren las siguientes acciones:
El Núcleo del Sistema Operativo El “núcleo” del Sistema Operativo controla todas las operaciones que implican procesos y representa solo una pequeña porción del código de todo el Sistema Operativo pero es de amplio uso [7, Deitel]. Generalmente permanece en el almacenamiento primario. El proceso de interrupciones se incluye en el núcleo ya que debe ser rápido (especialmente en sistemas multiusuario), para optimizar el uso de los recursos del sistema y proveer tiempos de respuesta aceptables a los usuarios interactivos. El núcleo inhabilita las interrupciones mientras responde a una interrupción. Las interrupciones son habilitadas de nuevo después de completar el proceso de una interrupción. El núcleo del Sistema Operativo generalmente realiza las siguientes funciones:
Cuando más de un proceso es ejecutable desde el punto de vista lógico, el Sistema Operativo debe decidir cuál de ellos debe ejecutarse en primer término. El Planificador es la porción del Sistema Operativo que decide y el Algoritmo de Planificación es el utilizado. Los principales “criterios” respecto de un buen algoritmo de planificación [23, Tanenbaum] son la equidad, la eficacia, el tiempo de respuesta, el tiempo de regreso y el rendimiento (ver Tabla 2.2 [23, Tanenbaum]).
Algunas de estas metas son contradictorias, por ejemplo, minimizar el tiempo de respuesta para los usuarios interactivos significaría no ejecutar las tareas batch. Cada proceso es único e impredecible, es decir que pueden requerir intensivamente operaciones de Entrada / Salida o intensivamente cpu; el planificador del Sistema Operativo no tiene la certeza de cuánto tiempo transcurrirá hasta que un proceso se bloquee, ya sea por una operación de Entrada / Salida o por otra razón . Para evitar que un proceso se apropie de la cpu un tiempo excesivo, los equipos poseen un dispositivo que provoca una interrupción en forma periódica, por ejemplo 60 hz, o sea sesenta veces por segundo. En cada interrupción del reloj el Sistema Operativo decide si el proceso que se está ejecutando continúa o si el proceso agotó su tiempo de cpu y debe suspenderse y ceder la cpu a otro proceso. Los principales conceptos relacionados con Planificación del Procesador son los siguiente:
Niveles de Planificación del Procesador Se consideran tres niveles importantes de planificación, los que se detallan a continuación (ver Figura 2.4 [7, Deitel]):
Los objetivos de la planificación del procesador son los siguientes e involucran a los conceptos detallados seguidamente [7, Deitel]:
Para realizar los objetivos de la planificación, un mecanismo de planificación debe considerar lo siguiente [7, Deitel]:
Planificación Apropiativa Versus No Apropiativa Las Disciplinas de Planificación pueden ser Apropiativas o No Apropiativas (ver Tabla 2.3 [23, Tanenbaum]).
Las principales características de la planificación apropiativa son las siguientes:
El mecanismo debería ser sencillo pero efectivo y significativo.
Temporizador de Intervalos o Reloj de Interrupción El proceso al cual está asignada la cpu se dice que está en ejecución y puede ser un proceso de Sistema Operativo o de usuario. El Sistema Operativo dispone de mecanismos para quitarle la cpu a un proceso de usuario para evitar que monopolice el sistema. El Sistema Operativo posee un “reloj de interrupción” o “temporizador de intervalos” para generar una interrupción, en algún tiempo futuro específico o después de un transcurso de tiempo en el futuro; la cpu es entonces despachada hacia el siguiente proceso [7, Deitel]. Un proceso retiene el control de la cpu hasta que ocurra alguna de las siguientes situaciones:
El reloj de interrupción ayuda a garantizar tiempos de respuesta razonables a usuarios interactivos, ya que evita que el sistema se “cuelgue” a un solo usuario en un ciclo infinito y permite que los procesos respondan a “eventos dependientes del tiempo”. Asimismo, los procesos que necesitan una ejecución periódica dependen del reloj de interrupción [22, Tanenbaum].
Las prioridades pueden ser de distinto tipo (ver Tabla 2.4 [7, Deitel]).
En el caso de prioridades asignadas arbitrariamente, un mecanismo del sistema necesita distinguir entre procesos sin importarle cuál es el más importante. Las principales características de las prioridades estáticas son las siguientes:
Ciertos trabajos se planifican para ser terminados en un tiempo específico o plazo fijo. Es una planificación compleja debido a los siguientes factores:
Se establecen compromisos de desempeño con el proceso del usuario, por ejemplo, si existen “n” procesos en el sistema, el proceso del usuario recibirá cerca del “1 / n” de la potencia de la cpu. El sistema debe tener un registro del tiempo de cpu que cada proceso ha tenido desde su entrada al sistema y del tiempo transcurrido desde esa entrada. Con los datos anteriores y el registro de procesos en curso de ejecución, el sistema calcula y determina qué procesos están más alejados por defecto de la relación “1 / n” prometida y prioriza los procesos que han recibido menos cpu de la prometida.
Planificación del Primero en Entrar Primero en Salir (FIFO) Es muy simple, los procesos se despachan de acuerdo con su tiempo de llegada a la cola de listos. Una vez que el proceso obtiene la cpu, se ejecuta hasta terminar, ya que es una disciplina “no apropiativa”. Puede ocasionar que procesos largos hagan esperar a procesos cortos y que procesos no importantes hagan esperar a procesos importantes. Es más predecible que otros esquemas. No puede garantizar buenos tiempos de respuesta interactivos. Suele utilizarse integrado a otros esquemas, por ejemplo, de la siguiente manera:
Planificación de Asignación en Rueda (RR: Round Robin) Los procesos se despachan en “FIFO” y disponen de una cantidad limitada de tiempo de cpu, llamada “división de tiempo” o “cuanto”. Si un proceso no termina antes de expirar su tiempo de cpu ocurren las siguientes acciones:
La sobrecarga de la apropiación se mantiene baja mediante mecanismos eficientes de intercambio de contexto y con suficiente memoria principal para los procesos.
La determinación del tamaño del cuanto es decisiva para la operación efectiva de un sistema computacional [7, Deitel]. Los interrogantes son: ¿cuanto pequeño o grande?, ¿cuanto fijo o variable? y ¿cuanto igual para todos los procesos de usuarios o determinado por separado para cada uno de ellos?. Si el cuanto se hace muy grande, cada proceso recibe todo el tiempo necesario para llegar a su terminación, por lo cual la asignación en rueda (“RR”) degenera en “FIFO”. Si el cuanto se hace muy pequeño, la sobrecarga del intercambio de contexto se convierte en un factor dominante y el rendimiento del sistema se degrada, puesto que la mayor parte del tiempo de cpu se invierte en el intercambio del procesador (cambio de contexto) y los procesos de usuario disponen de muy poco tiempo de cpu.
El cuanto debe ser lo suficientemente grande como para permitir que la gran mayoría de las peticiones interactivas requieran de menos tiempo que la duración del cuanto, es decir que el tiempo transcurrido desde el otorgamiento de la cpu a un proceso hasta que genera una petición de Entrada / Salida debe ser menor que el cuanto establecido, de esta forma, ocurrida la petición la cpu pasa a otro proceso y como el cuanto es mayor que el tiempo transcurrido hasta la petición de Entrada / Salida, los procesos trabajan al máximo de velocidad, se minimiza la sobrecarga de apropiación y se maximiza la utilización de la El cuanto óptimo varía de un sistema a otro y con la carga, siendo un valor de referencia 100 mseg (cien milisegundos).
Planificación del Trabajo Más Corto Primero (SJF) Es una disciplina no apropiativa y por lo tanto no recomendable en ambientes de tiempo compartido. El proceso en espera con el menor tiempo estimado de ejecución hasta su terminación es el siguiente en ejecutarse. Los tiempos promedio de espera son menores que con “FIFO”. Los tiempos de espera son menos predecibles que en “FIFO”. Favorece a los procesos cortos en detrimento de los largos. Tiende a reducir el número de procesos en espera y el número de procesos que esperan detrás de procesos largos. Requiere un conocimiento preciso del tiempo de ejecución de un proceso, lo que generalmente se desconoce. Se pueden estimar los tiempos en base a series de valores anteriores.
Planificación del Tiempo Restante Más Corto (SRT) Es la contraparte apropiativa del SJF. Es útil en sistemas de tiempo compartido. El proceso con el tiempo estimado de ejecución menor para …nalizar es el siguiente en ser ejecutado. Un proceso en ejecución puede ser apropiado por un nuevo proceso con un tiempo estimado de ejecución menor. Tiene mayor sobrecarga que la planificación SJF. Debe mantener un registro del tiempo de servicio transcurrido del proceso en ejecución, lo que aumenta la sobrecarga. Los trabajos largos tienen un promedio y una varianza de los tiempos de espera aún mayor que en SJF. La apropiación de un proceso a punto de terminar por otro de menor duración recién llegado podría significar un mayor tiempo de cambio de contexto (administración del procesador) que el tiempo de finalización del primero. Al diseñarse los Sistemas Operativos se debe considerar cuidadosamente la sobrecarga de los mecanismos de administración de recursos comparándola con los beneficios esperados.
Planificación el Siguiente con Relación de Respuesta Máxima (HRN) Corrige algunas de las debilidades del SJF, tales como el exceso de perjuicio hacia los procesos (trabajos) largos y el exceso de favoritismo hacia los nuevos trabajos cortos. Es una disciplina no apropiativa. La prioridad de cada proceso está en función no sólo del tiempo de servicio del trabajo, sino que también influye la cantidad de tiempo que el trabajo ha estado esperando ser servido. Cuando un proceso ha obtenido la cpu, corre hasta terminar. Las prioridades, que son dinámicas, se calculan según la siguiente fórmula, donde pr es la “prioridad”, te es el “tiempo de espera” y ts es el “tiempo de servicio”:
Considera factores externos al proceso [23, Tanenbaum]. Las ideas centrales son que cada proceso tiene asociada una prioridad y que el proceso ejecutable con máxima prioridad es el que tiene el permiso de ejecución. Los procesos de alta prioridad podrían ejecutar indefinidamente, ya que el planificador del sistema puede disminuir la prioridad del proceso en ejecución en cada interrupción del reloj. Las prioridades también pueden ser asignadas dinámicamente por el sistema para lograr ciertas metas relacionadas con el procesador o la Entrada / Salida. Los procesos limitados por la Entrada / Salida (requerimientos intensivos de Entrada / Salida) ocupan mucho de su tiempo en espera de operaciones de Entrada / Salida, por lo tanto:
Un proceso que utilice 2 mseg (dos milisegundos) de su cuanto de 100 mseg (cien milisegundos) tendrá prioridad 50 (cincuenta). Un proceso que se ejecutó 50 mseg antes del bloqueo tendrá prioridad 2. Un proceso que utilizó todo el cuanto tendrá prioridad 1. Frecuentemente los procesos se agrupan en “Clases de Prioridad”, en cuyo caso se utiliza la Planificación con Prioridades entre las clases y con Round Robin (RR) dentro de cada clase. Si las prioridades no se reajustan en algún momento, los procesos de las clases de prioridad mínima podrían demorarse indefinidamente.
Colas de Retroalimentación de Niveles Múltiples Proporcionan una estructura para lograr los siguientes objetivos:
Se mueve por esta cola “FIFO” hasta obtener la cpu. Si el trabajo termina o abandona la cpu para esperar por la terminación de una operación de Entrada / Salida o la terminación de algún otro suceso, el trabajo abandona la red de línea de espera. Si su cuanto expira antes de abandonar la cpu voluntariamente, el proceso se coloca en la parte trasera de la cola del siguiente nivel inferior. El trabajo recibe servicio al llegar a la cabeza de esta cola si la primera está vacía. Mientras el proceso continúe consumiendo totalmente su cuanto en cada nivel, continuará moviéndose hacia el final de las colas inferiores. Generalmente hay una cola en la parte más profunda a través de la cual el proceso circula en asignación de rueda hasta que termina. Existen esquemas en los que el cuanto otorgado al proceso aumenta a medida que el proceso se mueve hacia las colas de los niveles inferiores, en tal caso, cuanto más tiempo haya estado el proceso en la red de línea de espera, mayor será su cuanto cada vez que obtiene la cpu y no podrá obtener la cpu muy a menudo debido a la mayor prioridad de los procesos de las colas superiores. Un proceso situado en una cola dada no podrá ser ejecutado hasta que las colas de los niveles superiores estén vacías. Un proceso en ejecución es apropiado por un proceso que llegue a una cola superior. Es un mecanismo adaptable, es decir que se adapta a cargas variables. A los efectos de una revisión gráfica de lo enunciado precedentemente, ver la figura 2.5 [7, Deitel].
Política Versus Mecanismo de Planificación Puede ocurrir que haya procesos con muchos procesos hijos ejecutándose bajo su control, por ejemplo, un proceso en un DBMS con procesos hijos atendiendo funciones específicas, tales como, análisis de interrogantes, acceso a discos, etc. Es posible que el proceso principal (padre) pueda identificar la importancia (o criticidad) de sus procesos hijos, pero los planificadores analizados no aceptan datos de los procesos de usuario relativos a decisiones de planificación. La solución es separar el mecanismo de planificación de la política de planificación, para ello se parametriza el algoritmo de planificación y los parámetros pueden ser determinados por medio de procesos del usuario; así el mecanismo está en el núcleo del Sistema Operativo pero la política queda establecida por un proceso del usuario.
Los esquemas analizados hasta ahora suponen que todos los procesos ejecutables están en la memoria principal. Si la memoria principal es insuficiente, ocurrirá lo siguiente [23, Tanenbaum]:
El esquema operativo de un planificador de dos niveles es como sigue:
Es una tendencia significativa en el campo de la computación. Consiste en configurar un sistema de computación con varios procesadores . No es un enfoque nuevo pero sí posee grandes perspectivas en función del desarrollo de los microprocesadores. Se podrían concebir sistemas construidos por cientos o miles de microprocesadores.
Si un procesador falla, los restantes continúan operando, lo cual no es automático y requiere de un diseño cuidadoso. Un procesador que falla habrá de informarlo a los demás de alguna manera, para que se hagan cargo de su trabajo. Los procesadores en funcionamiento deben poder detectar el fallo de un procesador determinado. El Sistema Operativo debe percibir que ha fallado un procesador determinado y ya no podrá asignarlo y también debe ajustar sus estrategias de asignación de recursos para evitar la sobrecarga del sistema que está degradado.
La mayoría de los sistemas de multiprocesamiento tienen como meta principal el incremento de la capacidad de ejecución. La programación sigue siendo esencialmente secuencial y generalmente no se explota la concurrencia. Las principales razones son las siguientes:
Lo deseable es que los Sistemas Operativos y compiladores puedan detectar e implementar el paralelismo automáticamente.
Se debe disponer de suficientes procesadores como para que todas las operaciones que puedan ser ejecutadas en paralelo puedan ser asignadas a procesadores separados [14, Pino y Marrone]. Esto ofrece una forma de ejecutar un programa en el menor tiempo posible. La cuestión central es, disponiendo del paralelismo masivo, ¿cuál es el tiempo mínimo requerido para ejecutar un algoritmo determinado?.
Metas de los Sistemas de Multiprocesamiento Las metas de los sistemas de multiprocesamiento generalmente son la confiabilidad y la disponibilidad muy altas, como así también el incremento del poder de computación. El diseño modular proporciona una flexibilidad importante y facilita la expansión de la capacidad.
Detección Automática del Paralelismo Los multiprocesadores hacen posible la explotación del paralelismo. Los sistemas de computación obtienen los beneficios del procesamiento concurrente más por la “multiprogramación” de varios procesos y menos por la explotación del “paralelismo” dentro de un solo proceso. La detección del paralelismo es un problema complejo y la puede efectuar el programador, el traductor del lenguaje, el hardware o el Sistema Operativo. El paralelismo dentro de los programas puede ser “explícito” o “implícito”. Las principales características del paralelismo explícito son las que se detallan a continuación:
Una “estructura de ciclos o de repetición” implica la repetición de una serie de proposiciones (cuerpo del ciclo) hasta que ocurre alguna condición de terminación, por ejemplo:
For i = 1 to 3
; El procesador secuencial realizará en secuencia lo siguiente:
En un sistema de multiprocesamiento con tres procesadores disponibles se podrían ejecutar concurrentemente. Un compilador que detecte automáticamente el paralelismo implícito puede convertir el ciclo del ejemplo 2.2 en lo siguiente: cobegin;
coend; Esta técnica se denomina distribución de ciclos.
Reducción de la Altura del Arbol Utilizando las propiedades asociativa, conmutativa y distributiva de la aritmética, los compiladores pueden:
| |||||||||||||||||||||||||||||||||||||||
Tu Sitio Web Gratis © 2025 FUNDAMENTOS DE SISTEMAS OPERATIVOS18896 |